segunda-feira, 21 de novembro de 2011
Cilindro
CILINDRO CIRCULAR
1.1. Definição
Considere dois planos paralelos (a e b) , uma
reta t incidente em a e uma região circular contida
em b. Observe a figura abaixo.
Define-se como cilindro o sólido formado por
todos os segmentos paralelos a t e extremos na região
circular e no plano a. Observe a ilustração abaixo.
1.2. Elementos
Considere o cilindro a seguir.
Eixo do cilindro: reta t, que passa no centro
das bases.
Base: regiões circulares.
Geratrizes: segmentos com extremos na
circunferência das bases e paralelos ao eixo.
Secção meridiana: intersecção do plano que
contém o eixo com o cilindro. Observe a figura
a seguir.
1.3. Áreas importantes do cilindro reto
Área da base (Ab )
Área lateral (Al )
Área total
At=2Ab+Al => At=2 PIR²+2 PIRH => At=2 PIR (R+H)
1.4. Volume
Observe que o cilindro é um sólido de secção
constante. Logo, seu volume pode ser determinado
pela relação V = Ab×H, em que Ab representa a área
da base e H representa a altura do cilindro.
1.5. Classificação
Cilindro reto
O cilindro reto possui o eixo perpendicular ao
plano da base. Neste cilindro, encontramos:
I) a geratriz perpendicular ao plano da base.
II) a medida da altura igual à medida da geratriz.
III) a secção meridiana retangular.
Cilindro eqüilátero
O cilindro circular reto cujas secções meridianas
são quadradas é chamado de cilindro eqüilátero.
No cilindro eqüilátero, encontramos a altura igual ao
diâmetro da base (H = 2R) .
EXERCÍCIOS
1) Para se construir uma lata cilíndrica
de base circular, sem tampa, com 20cm de diâmetros
de base e 25cm de altura, são gastos x cm² de
material. O valor de x é:
PI=10
Ab=PIR² => Ab=10².PI => Ab=100PI
Al=2PIRh => Al=2.PI.10.25 => Al=500PI
Ab+Al=600PI
2) A altura de um cilindro é o triplo do raio de sua
base. Sabendo que a área de uma secção meridiana
desse cilindro é 216cm², calcule o volume do
cilindro:
( ) 648PIdm³
( ) 64,8PIdm³
( ) 6,48PIdm³
(x) 0,648PIdm³
( ) 0,0648PIdm³
3)A figura mostra uma peça cilíndrica transpassada
por um furo circular do centro de uma base ao
centro da outra. Qual é o volume dessa peça?
( ) 2000PI
(x) 1000PI
( ) 500PI
( ) 300PI
( ) Nenhuma
4)Corta-se um cilindro circular reto ao meio. Sabendo-
se que o corte origina, em cada uma das
partes resultantes, uma face quadrada com área
igual a 16cm². Determinar o volume do cilindro
original.
( ) 8PIcm³
(x) 16PIcm³
( ) 32PIcm³
( ) 48PIcm³
( ) 96PIcm³
5)Para encher de água um reservatório
que tem a forma de um cilindro circular reto são
necessárias 5 horas. Se o raio da base é 3m e a altura
10m, o reservatório recebe água à razão de:
(x) 18 PI m³ por hora
( ) 30 PI m³ por hora
( ) 6 PI m³ por hora
( ) 20 PI m³ por hora
( ) Nenhuma
6)Um cilindro reto, cuja
base é um círculo de raio R=3m, tem 108 PI m³ de
volume. Então, a área total desse cilindro é:
( ) 126 PI m²
( ) 81 PI m²
( ) 72 PI m²
(x) 90 PI m²
( ) 108 PI m²
domingo, 20 de novembro de 2011
ESFERA 1004
O CONCEITO DA ESFERA
A esfera no espaço R³ é uma superfície muito importante em função de suas aplicações a problemas da vida. Do ponto de vista matemático, a esfera no espaço R³ é confundida com o sólido geométrico (disco esférico) envolvido pela mesma, razão pela qual muitas pessoas calculam o volume da esfera. Na maioria dos livros elementares sobre Geometria, a esfera é tratada como se fosse um sólido, herança da Geometria Euclidiana.
Embora não seja correto, muitas vezes necessitamos falar palavras que sejam entendidas pela coletividade. De um ponto de vista mais cuidadoso, a esfera no espaço R³ é um objeto matemático parametrizado por duas dimensões, o que significa que podemos obter medidas de área e de comprimento mas o volume tem medida nula. Há outras esferas, cada uma definida no seu respectivo espaço n-dimensional. Um caso interessante é a esfera na reta unidimensional:
So = {x em R: x²=1} = {+1,-1}
Por exemplo, a esfera
S1 = { (x,y) em R²: x² + y² = 1 }
é conhecida por nós como uma circunferência de raio unitário centrada na origem do plano cartesiano.
Aplicação: volumes de líquidos
Um problema fundamental para empresas que armazenam líquidos em tanques esféricos, cilíndricos ou esféricos e cilíndricos é a necessidade de realizar cálculos de volumes de regiões esféricas a partir do conhecimento da altura do líquido colocado na mesma. Por exemplo, quando um tanque é esférico, ele possui um orifício na parte superior (polo Norte) por onde é introduzida verticalmente uma vara com indicadores de medidas. Ao retirar a vara, observa-se o nível de líquido que fica impregnado na vara e esta medida corresponde à altura de líquido contido na região esférica. Este não é um problema trivial, como observaremos pelos cálculos realizados na sequência.
A seguir apresentaremos elementos esféricos básicos e algumas fórmulas para cálculos de áreas na esfera e volumes em um sólido esférico.
A superfície esférica
A esfera no espaço R³ é o conjunto de todos os pontos do espaço que estão localizados a uma mesma distância denominada raio de um ponto fixo chamado centro.
Uma notação para a esfera com raio unitário centrada na origem de R³ é:
S² = { (x,y,z) em R³: x² + y² + z² = 1 }
Uma esfera de raio unitário centrada na origem de R4 é dada por:
S³ = { (w,x,y,z) em R4: w² + x² + y² + z² = 1 }
Você conseguiria imaginar espacialmente tal esfera?
Do ponto de vista prático, a esfera pode ser pensada como a película fina que envolve um sólido esférico. Em uma melancia esférica, a esfera poderia ser considerada a película verde (casca) que envolve a fruta.
É comum encontrarmos na literatura básica a definição de esfera como sendo o sólido esférico, no entanto não se deve confundir estes conceitos. Se houver interesse em aprofundar os estudos desses detalhes, deve-se tomar algum bom livro de Geometria Diferencial que é a área da Matemática que trata do detalhamento de tais situações.
O disco esférico é o conjunto de todos os pontos do espaço que estão localizados na casca e dentro da esfera. Do ponto de vista prático, o disco esférico pode ser pensado como a reunião da película fina que envolve o sólido esférico com a região sólida dentro da esfera. Em uma melancia esférica, o disco esférico pode ser visto como toda a fruta.
Quando indicamos o raio da esfera pela letra R e o centro da esfera pelo ponto (0,0,0), a equação da esfera é dada por:
x² + y² + z² = R²
e a relação matemática que define o disco esférico é o conjunto que contém a casca reunido com o interior, isto é:
x² + y² + z² < R²
Quando indicamos o raio da esfera pela letra R e o centro da esfera pelo ponto (xo,yo,zo), a equação da esfera é dada por:
(x-xo)² + (y-yo)² + (z-zo)² = R²
e a relação matemática que define o disco esférico é o conjunto que contém a casca reunido com o interior, isto é, o conjunto de todos os pontos (x,y,z) em R³ tal que:
(x-xo)² + (y-yo)² + (z-zo)² < R²
Da forma como está definida, a esfera centrada na origem pode ser construída no espaço euclidiano R³ de modo que o centro da mesma venha a coincidir com a origem do sistema cartesiano R³, logo podemos fazer passar os eixos OX, OY e OZ, pelo ponto (0,0,0).
Seccionando a esfera x²+y²+z²=R² com o plano z=0, obteremos duas superfícies semelhantes: o hemisfério Norte ("boca para baixo") que é o conjunto de todos os pontos da esfera onde a cota z é não negativa e o hemisfério Sul ("boca para cima") que é o conjunto de todos os pontos da esfera onde a cota z não é positiva.
Se seccionarmos a esfera x²+y²+z²=R² por um plano vertical que passa em (0,0,0), por exemplo, o plano x=0, teremos uma circunferência maximal C da esfera que é uma circunferência contida na esfera cuja medida do raio coincide com a medida do raio da esfera, construída no plano YZ e a equação desta circunferência será:
x=0, y² + z² = R2
sendo que esta circunferência intersecta o eixo OZ nos pontos de coordenadas (0,0,R) e (0,0,-R). Existem infinitas circunferências maximais em uma esfera.
Se rodarmos esta circunferência maximal C em torno do eixo OZ, obteremos a esfera através da rotação e por este motivo, a esfera é uma superfície de revolução.
Se tomarmos um arco contido na circunferência maximal cujas extremidades são os pontos (0,0,R) e (0,p,q) tal que p²+q²=R² e rodarmos este arco em torno do eixo OZ, obteremos uma superfície denominada calota esférica.
Na prática, as pessoas usam o termo calota esférica para representar tanto a superfície como o sólido geométrico envolvido pela calota esférica. Para evitar confusões, usarei "calota esférica" com aspas para o sólido e sem aspas para a superfície.
A partir da rotação, construiremos duas calotas em uma esfera, de modo que as extremidades dos arcos sejam (0,0,R) e (0,p,q) com p²+q²=R² no primeiro caso (calota Norte) e no segundo caso (calota Sul) as extremidades dos arcos (0,0,-R) e (0,r,-s) com r²+s²=R² e retirarmos estas duas calotas da esfera, teremos uma superfície de revolução denominada zona esférica.
De um ponto de vista prático, consideremos uma melancia esférica. Com uma faca, cortamos uma "calota esférica" superior e uma "calota esférica" inferior. O que sobra da melancia é uma região sólida envolvida pela zona esférica, algumas vezes denominada zona esférica.
Consideremos uma "calota esférica" com altura h1 e raio da base r1 e retiremos desta calota uma outra "calota esférica" com altura h2 e raio da base r2, de tal modo que os planos das bases de ambas sejam paralelos. A região sólida determinada pela calota maior menos a calota menor recebe o nome de segmento esférico com bases paralelas.
No que segue, usaremos esfera tanto para o sólido como para a superfície, "calota esférica" para o sólido envolvido pela calota esférica, a letra maiúscula R para entender o raio da esfera sobre a qual estamos realizando os cálculos, V será o volume, A(lateral) será a área lateral e e A(total) será a área total.
Algumas fórmulas (relações) para objetos esféricos
Objeto | Relações e fórmulas |
---|---|
Esfera | Volume = (4/3) Pi R³ A(total) = 4 Pi R² |
Calota esférica (altura h, raio da base r) | R² = h (2R-h) A(lateral) = 2 Pi R h A(total) = Pi h (4R-h) V=Pi.h²(3R-h)/3=Pi(3R²+h²)/6 |
Segmento esférico (altura h, raios das bases r1>r²) | R² = a² + [(r1² -r2²-h²)/2h)]² A(lateral) = 2 Pi R h A(total) = Pi(2Rh+r1²+r2²) Volume=Pi.h(3r1²+3r2²+h²)/6 |
Estas fórmulas podem ser obtidas como aplicações do Cálculo Diferencial e Integral, mas nós nos limitaremos a apresentar um processo matemático para a obtenção da fórmula do cálculo do volume da "calota esférica" em função da altura da mesma.
Volume de uma calota no hemisfério Sul
Consideremos a esfera centrada no ponto (0,0,R) com raio R.
A equação desta esfera será dada por:
x² + y² + (z-R)² = R²
A altura da calota será indicada pela letra h e o plano que coincide com o nível do líquido (cota) será indicado por z=h. A interseção entre a esfera e este plano é dado pela circunferência
x² + y² = R² - (h-R)²
Obteremos o volume da calota esférica com a altura h menor ou igual ao raio R da esfera, isto é, h pertence ao intervalo [0,R] e neste caso poderemos explicitar o valor de z em função de x e y para obter:
Para simplificar as operações algébricas, usaremos a letra r para indicar:
r² = R² - (h-R)² = h(2R-h)
A região circular S de integração será descrita por x²+y²<R² ou em coordenadas polares através de:
0<m<R, 0<t<2Pi
A integral dupla que representa o volume da calota em função da altura h é dada por:
ou seja
Escrita em Coordenadas Polares, esta integral fica na forma:
Após realizar a integral na variável t, podemos separá-la em duas integrais:
ou seja:
Com a mudança de variável u=R²-m² e du=(-2m)dm poderemos reescrever:
Após alguns cálculos obtemos:
VC(h) = Pi (h-R) [R² -(h-R)²] - (2/3)Pi[(R-h)³ - R³]
e assim temos a fórmula para o cálculo do volume da calota esférica no hemisfério Sul com a altura h no intervalo [0,R], dada por:
VC(h) = Pi h²(3R-h)/3
Volume de uma calota no hemisfério Norte
Se o nível do líquido mostra que a altura h já ultrapassou o raio R da região esférica, então a altura h está no intervalo [R,2R]
Lançaremos mão de uma propriedades de simetria da esfera que nos diz que o volume da calota superior assim como da calota inferior somente depende do raio R da esfera e da altura h e não da posição relativa ocupada.
Aproveitaremos o resultado do cálculo utilizado para a calota do hemisfério Sul. Tomaremos a altura tal que: h=2R-d, onde d é a altura da região que não contém o líquido. Como o volume desta calota vazia é dado por:
VC(d) = Pi d²(3R-d)/3
e como h=2R-d, então para h no intervalo [R,2R], poderemos escrever o volume da calota vazia em função de h:
VC(h) = Pi (2R-h)²(R+h)/3
Para obter o volume ocupado pelo líquido, em função da altura, basta tomar o volume total da região esférica e retirar o volume da calota vazia, para obter:
V(h) = 4Pi R³/3 - Pi (2R-h)²(R+h)/3
que pode ser simplificada para:
V(h) = Pi h²(3R-h)/3
Independentemente do fato que a altura h esteja no intervalo [0,R] ou [R,2R] ou de uma forma geral em [0,2R], o cálculo do volume ocupado pelo líquido é dado por:
V(h) = Pi h²(3R-h)/3
O raio desta circunferência, em cm é:
a) 1.
b) 2.
c) 3.
d) 4.
e) 5.
resposta:[E]
a) 21 %.
b) 11 %.
c) 31 %.
d) 24 %.
e) 30 %.
resposta:[A]
a) Provar que a intersecção é um círculo.
b) Determinar (em função do raio r da esfera) a distância do ponto P ao centro, a fim de que o círculo intersecção tenha área igual à metade da de um círculo máximo da esfera.
resposta:b) OP = (r.v2)/2
Pirâmide
Consideremos um polígono contido em um plano (por exemplo, o plano horizontal) e um ponto V localizado fora desse plano. Uma Pirâmide é a reunião de todos os segmentos que têm uma extremidade em P e a outra num ponto qualquer do polígono. O ponto V recebe o nome de vértice da pirâmide.
Exemplo: As pirâmides do Egito, eram utilizadas para sepultar faraós, bem como as pirâmides no México e nos Andes, que serviam a finalidades de adoração aos seus deuses. As formas piramidais eram usadas por tribos indígenas e mais recentemente por escoteiros para construir barracas.
Elementos de uma Pirâmide
Em uma pirâmide, podemos identificar vários elementos:
Base: A base da pirâmide é a região plana poligonal sobre a qual se apoia a pirâmide.
Vértice: O vértice da pirâmide é o ponto isolado P mais distante da base da pirâmide.
Eixo: Quando a base possui um ponto central, isto é, quando a região poligonal é simétrica ou regular, o eixo da pirâmide é a reta que passa pelo vértice e pelo centro da base.
Altura: Distância do vértice da pirâmide ao plano da base.
Faces laterais: São regiões planas triangulares que passam pelo vértice da pirâmide e por dois vértices consecutivos da base.
Arestas Laterais: São segmentos que têm um extremo no vértice da pirâmide e outro extremo num vértice do polígono situado no plano da base.
Apótema: É a altura de cada face lateral.
Superfície Lateral: É a superfície poliédrica formada por todas as faces laterais.
Aresta da base: É qualquer um dos lados do polígono da base.
Classificação das pirâmides pelo número de lados da base
triangular quadrangular pentagonal hexagonal base:triângulo base:quadrado base:pentágono base:hexágono Pirâmide Regular reta
Pirâmide regular reta é aquela que tem uma base poligonal regular e a projeção ortogonal do vértice V sobre o plano da base coincide com o centro da base.
R raio do circulo circunscrito r raio do círculo inscrito l aresta da base ap apótema de uma face lateral h altura da pirâmide al aresta lateral As faces laterais são triângulos isósceles congruentes Área Lateral de uma pirâmide
Às vezes podemos construir fórmulas para obter as áreas das superfícies que envolvem um determinado sólido. Tal processo é conhecido como a planificação desse sólido. Isto pode ser realizado se tomarmos o sólido de forma que a sua superfície externa seja feita de papelão ou algum outro material.
No caso da pirâmide, a idéia é tomar uma tesoura e cortar (o papelão d)a pirâmide exatamente sobre as arestas, depois reunimos as regiões obtidas num plano que pode ser o plano de uma mesa.
As regiões planas obtidas são congruentes às faces laterais e também à base da pirâmide.
Se considerarmos uma pirâmide regular cuja base tem n lados e indicarmos por A(face) a área de uma face lateral da pirâmide, então a soma das áreas das faces laterais recebe o nome de área lateral da pirâmide e pode ser obtida por:
A(lateral) = n A(face)
Exemplo: Seja a pirâmide quadrangular regular que está planificada na figura acima, cuja aresta da base mede 6cm e cujo apótema mede 4cm.
Como A(lateral)=n.A(face) e como a pirâmide é quadrangular temos n=4 triângulos isósceles, a área da face lateral é igual à área de um dos triângulos, assim:
A(face) = b h/2 = 6.4/2 = 12
A(lateral) = 4.12 = 48 cm²Exemplo: A aresta da base de uma pirâmide hexagonal regular mede 8 cm e a altura 10 cm. Calcular a área lateral.
Tomaremos a aresta com a=8 cm e a altura com h=10 cm. Primeiro vamos calcular a medida do apótema da face lateral da pirâmide hexagonal. Calcularemos o raio r da base.
Como a base é um hexágono regular temos que r=(a/2)R[3], assim r=8R[3]/2=4R[3] e pela relação de Pitágoras, segue que (ap)²=r²+h², logo:(ap)²= (4R[3])²+10² = 48+100 = 148 = 4·37 = 2R[37]
A área da face e a área lateral, são dadas por:
A(face) = 8.2[37]/2 = 8.R[37]
A(lateral) = n.A(face) = 6.8.R[37] = 48.R[37]Área total de uma PirâmideA área total de uma pirâmide é a soma da área da base com a área lateral, isto é:
A(total) = A(lateral) + A(base)
Exemplo: As faces laterais de uma pirâmide quadrangular regular formam ângulos de 60 graus com a base e têm as arestas da base medindo 18 cm. Qual é a área total?
Já vimos que A(lateral)=n.A(face) e como cos(60º)=(lado/2)/a, então 1/2=9/a donde segue que a=18, assim:
A(face) = b.h/2 = (18.18)/2 = 162
A(lateral) = 4.162 = 648
A(base) = 18² = 324Concluímos que:
A(total) = A(lateral) + A(base) = 648+324 = 970
Exemplo: Um grupo de escoteiros quer obter a área total de suas barracas, as quais têm forma piramidal quadrangular. Para isso, eles usam medidas escoteiras. Cada dois passos de um escoteiro mede 1 metro. A barraca tem 4 passos escoteiros de lado da base e 2 passos de apótema. Calcular a área da base, área lateral e a área total.
A(base) = 2.2 = 4 m²
A(lateral) = 4.2.1 = 8 m³Logo, a área total da barraca éA(total) = A(lateral) + A(base) = 8+4 = 12 m²
Volume de uma Pirâmide
O volume de uma pirâmide pode ser obtido como um terço do produto da área da base pela altura da pirâmide, isto é:
Volume = (1/3) A(base) h
Exemplo: Juliana tem um perfume contido em um frasco com a forma de uma pirâmide regular com base quadrada. A curiosa Juliana quer saber o volume de perfume que o frasco contém. Para isso ela usou uma régua e tirou duas informações: a medida da aresta da base de 4cm e a medida da aresta lateral de 6cm.
Como V(pirâmide)=A(base).h/3, devemos calcular a área da base e a medida da altura. Como a base tem forma quadrada de lado a=4cm, temos que A(base)=a²=4cm.4cm=16 cm².A altura h da pirâmide pode ser obtida como a medida de um cateto de um triângulo retângulo cuja hipotenusa é dada pela altura L=6cm da aresta lateral e o outro cateto Q=2×R[2] que é a metade da medida da diagonal do quadrado. Dessa forma h²=L²-Q², se onde segue que h²=36-8=28 e assim temos que h=2R[7] e o volume será dado por V=(1/3).16.2R[7]=(32/3)R[7].
Seção Transversal de uma pirâmide
Seção transversal de uma pirâmide é a interseção da pirâmide com um plano paralelo à base da mesma. A seção transversal tem a mesma forma que a base, isto é, as suas arestas correspondentes são proporcionais. A razão entre uma aresta da seção transversal e uma aresta correspondente da base é dita razão de semelhança.
Observações sobre seções transversais:
Em uma pirâmide qualquer, a seção transversal e a base são regiões poligonais semelhantes. A razão entre a área da seção transversal e a área da base é igual ao quadrado da razão de semelhança.
Ao seccionar uma pirâmide por um plano paralelo à base, obtemos outra pirâmide menor (acima do plano) semelhante em todos os aspectos à pirâmide original.
Se duas pirâmides têm a mesma altura e as áreas das bases são iguais, então as seções transversais localizadas à mesma distância do vértice têm áreas iguais.
V(seção) Volume da seção até o vértice
(volume da pirâmide menor)V(piram) Volume da pirâmide (maior) A(seção) Área da seção transversal
(base da pirâmide menor)A(base) Área da base da pirâmide (maior) h Distância do vértice à seção
(altura da pirâmide menor)H Altura da pirâmide (maior) Assim:
V(seção)
V(base)= A(seção)
A(piram)· h
HA(seção)
A(base)= h²
H²Então:
V(seção)
V(base)= h³
H³Exemplo: Uma pirâmide tem a altura medindo 9cm e volume igual a 108cm³. Qual é o volume do tronco desta pirâmide, obtido pelo corte desta pirâmide por um plano paralelo à base da mesma, sabendo-se que a altura do tronco da pirâmide é 3cm?
Como
V(pirMenor)/V(pirâmide) = h³/H³ V(pirMenor)/108 = 6³/9³ V(pirMenor) = 32
então
V(tronco)=V(pirâmide)-V(pirMenor)= 108cm³-2cm³ = 76 cm³